容器时代的日志处理

这是对目前接触到的日志处理的一个总结

日志收集

以前的架构一般是:

app -> stdout/stderr -> 重定向到文件 -> 定期将文件整理到某处

后来先进一点:

app -> stdout/stderr -> 重定向到文件 -> logstash等文件处理程序 -> | redis集中收发 | -> logstash收取到某处

再后来:

app -> stdout/stderr -> Docker -> fluentd -> fluentd收取到某处

日志搜索

以前一般都是grep,在没有集中处理日志的时候,可能还需要配合ansible等工具,多处grep。缺点是得手工执行,另外数据备份是个问题。

现在一般都是ELK镇场,logstash收到日志之后,顺便解析一下,丢到ElasticSearch中,由Kibana来搜索。

- 优点是:ElasticSearch一般会配上replica,日志不会丢掉
- 缺点是:正是因为replica,吃硬盘。另外还有一个缺点,logstash ruby写的,慢。所以现在收集这一步,改用filebeat了。

日志归档

  • 现在都上云了,用的云服务进行归档保存。当然,如果要用的日志(比如最近一个月的),还是会丢到hdfs等处。

没尝试过的

  • NSQ/Kafka:很多公司用这两个来传递日志。不过暂时还没尝试过,没有那么大量级。

更多文章
  • Python的yield关键字有什么作用?
  • 借助coroutine用同步的语法写异步
  • Python3函数参数中的星号
  • 使用Git Hooks
  • Token Bucket 算法
  • nginx配置笔记
  • 阅读Flask源码
  • 尤克里里
  • 学习使用Bootstrap4的栅格系统
  • 利用Github的WebHook完成自动部署
  • 使用Tornado和rst来写博客
  • Haskell do notation
  • foldl 和 foldr 的变换
  • Haskell TypeClass 笔记
  • 重新捡起你那吃灰的树莓派