Golang sync.Map源码分析

今天看了一下 sync.Map 的实现,首先我们从一个demo入手:

package main

import (
	"sync"
)

func main() {
	a := sync.Map{}
	a.Load()
	a.Delete()
	a.Store()
}

然后我们就可以跳到源码去看看到底是怎么实现的。首先看 Map 的定义:

type Map struct {
	mu Mutex

	// read contains the portion of the map's contents that are safe for
	// concurrent access (with or without mu held).
	//
	// The read field itself is always safe to load, but must only be stored with
	// mu held.
	//
	// Entries stored in read may be updated concurrently without mu, but updating
	// a previously-expunged entry requires that the entry be copied to the dirty
	// map and unexpunged with mu held.
	read atomic.Value // readOnly

	// dirty contains the portion of the map's contents that require mu to be
	// held. To ensure that the dirty map can be promoted to the read map quickly,
	// it also includes all of the non-expunged entries in the read map.
	//
	// Expunged entries are not stored in the dirty map. An expunged entry in the
	// clean map must be unexpunged and added to the dirty map before a new value
	// can be stored to it.
	//
	// If the dirty map is nil, the next write to the map will initialize it by
	// making a shallow copy of the clean map, omitting stale entries.
	dirty map[interface{}]*entry

	// misses counts the number of loads since the read map was last updated that
	// needed to lock mu to determine whether the key was present.
	//
	// Once enough misses have occurred to cover the cost of copying the dirty
	// map, the dirty map will be promoted to the read map (in the unamended
	// state) and the next store to the map will make a new dirty copy.
	misses int
}

在Map的注释里,写明了,sync.Map 在两种情况下比较好使:

// The Map type is optimized for two common use cases: (1) when the entry for a given
// key is only ever written once but read many times, as in caches that only grow,
// or (2) when multiple goroutines read, write, and overwrite entries for disjoint
// sets of keys. In these two cases, use of a Map may significantly reduce lock
// contention compared to a Go map paired with a separate Mutex or RWMutex.

一种是读多写少的情况下,一种是当多个goroutine并发读或写不同的key时。

可以看到 Map 有4个属性,mu 就是锁,read 是一个只读的值,可以看到,既然用了 atomic.Value 那么大概率是用 CAS 来进行操作的, dirty 是一个map,misses 是用来统计未命中的次数的,注释里说,当 misses 达到一定值时,就把 dirty 里的值放到 read 里。

read 的类型其实是 readOnly,定义如下:

// readOnly is an immutable struct stored atomically in the Map.read field.
type readOnly struct {
	m       map[interface{}]*entry
	amended bool // true if the dirty map contains some key not in m.
}

接下来我们就可以看看具体操作来进一步理解为啥要这样设计了。

// Load returns the value stored in the map for a key, or nil if no
// value is present.
// The ok result indicates whether value was found in the map.
func (m *Map) Load(key interface{}) (value interface{}, ok bool) {
	read, _ := m.read.Load().(readOnly)
	e, ok := read.m[key]
	if !ok && read.amended {
		m.mu.Lock()
		// Avoid reporting a spurious miss if m.dirty got promoted while we were
		// blocked on m.mu. (If further loads of the same key will not miss, it's
		// not worth copying the dirty map for this key.)
		read, _ = m.read.Load().(readOnly)
		e, ok = read.m[key]
		if !ok && read.amended {
			e, ok = m.dirty[key]
			// Regardless of whether the entry was present, record a miss: this key
			// will take the slow path until the dirty map is promoted to the read
			// map.
			m.missLocked()
		}
		m.mu.Unlock()
	}
	if !ok {
		return nil, false
	}
	return e.load()
}

首先加载 read,如果没有取到值,就去 dirty 里拿,并且记录下来未命中:

func (m *Map) missLocked() {
	m.misses++
	if m.misses < len(m.dirty) {
		return
	}
	m.read.Store(readOnly{m: m.dirty})
	m.dirty = nil
	m.misses = 0
}

可以看到,如果 m.misses < len(m.dirty) 那么就啥也不干,否则就把m.dirty 的值存储到 m.read 里。

这里我有一个疑问,就是直接把 dirty 替换上去的话,read 里的值咋办呢?除非是 dirty 里有所有 read 的值。

我们带着疑惑看看 Store 是怎么处理的:

// Store sets the value for a key.
func (m *Map) Store(key, value interface{}) {
	read, _ := m.read.Load().(readOnly)
	if e, ok := read.m[key]; ok && e.tryStore(&value) {
		return
	}

	m.mu.Lock()
	read, _ = m.read.Load().(readOnly)
	if e, ok := read.m[key]; ok {
		if e.unexpungeLocked() {
			// The entry was previously expunged, which implies that there is a
			// non-nil dirty map and this entry is not in it.
			m.dirty[key] = e
		}
		e.storeLocked(&value)
	} else if e, ok := m.dirty[key]; ok {
		e.storeLocked(&value)
	} else {
		if !read.amended {
			// We're adding the first new key to the dirty map.
			// Make sure it is allocated and mark the read-only map as incomplete.
			m.dirtyLocked()
			m.read.Store(readOnly{m: read.m, amended: true})
		}
		m.dirty[key] = newEntry(value)
	}
	m.mu.Unlock()
}

同样,首先先把 read 取出来,然后看看 read 里是否有这个值,如果有的话,就更新:

func (e *entry) tryStore(i *interface{}) bool {
	for {
		p := atomic.LoadPointer(&e.p)
		if p == expunged {
			return false
		}
		if atomic.CompareAndSwapPointer(&e.p, p, unsafe.Pointer(i)) {
			return true
		}
	}
}

类似于一个自旋锁,循环到存进去了为止。如果没有存进去,那么就继续走下面的逻辑,开始再次尝试读 read,如果有的话,更新值,没有的话就看 dirty 里有没有, 如果 readdirty 都没有的话,并且此时 read 也没有修改,就会调用

m.dirtyLocked()

func (m *Map) dirtyLocked() {
	if m.dirty != nil {
		return
	}

	read, _ := m.read.Load().(readOnly)
	m.dirty = make(map[interface{}]*entry, len(read.m))
	for k, e := range read.m {
		if !e.tryExpungeLocked() {
			m.dirty[k] = e
		}
	}
}

会把 read 里的值全部拷贝过来,然后赋值给 read,但是如果 readamended 标记为true就不会执行。 然后最终还是写到了 m.dirty

这上面的逻辑很重要的一个原因就是和读取时的顺序有关系,都是保证先读取 read,然后加锁之后还会二次确认是否在 read 里,然后才会考虑去 dirty 里看。

上一个疑惑倒是解开了,但是新的疑惑又来了,read.amended 是啥意思,从字面上来看,是说 dirty 里有数据,那么就会标记为 true,我们来看看相关操作:

func (m *Map) Store(key, value interface{}) {
        ...
		if !read.amended {
			// We're adding the first new key to the dirty map.
			// Make sure it is allocated and mark the read-only map as incomplete.
			m.dirtyLocked()
			m.read.Store(readOnly{m: read.m, amended: true})
		}
		m.dirty[key] = newEntry(value)
        ...
}

        ...


func (m *Map) missLocked() {
	m.misses++
	if m.misses < len(m.dirty) {
		return
	}
	m.read.Store(readOnly{m: m.dirty})
	m.dirty = nil
	m.misses = 0
}

懂了,原来就是,当 dirty 里开始写入数据的时候,如果这个key在 readdirty 里都没有,那就没法直接更新,所以就得往 m.dirty 写数据,只要 m.dirty 里有数据,那么 read.amended 一定是 true,而当上一次做完 dirty 替换为 read 时, 这个时候 read.amendedfalse,就会执行把read的值全部copy过来然后初始化 dirty 的操作。

挺绕的,可以说 sync.Map 设计的有点精妙,也可以说是挺复杂的,如果逻辑没有搞清楚,很容易就会出并发问题。

总结一下,sync.Map 为了实现高性能的并发Map,采用了类似读写分离的设计,读取的逻辑是优先读 read,其次读 dirty;写入 的逻辑是,优先更新 read,其次尝试更新 dirty。正是因为读取时,会先读取 read 然后才是 dirty,所以写入的时候,即使 read 没有,也可以写入到 dirty

2021.03.16 经伟大的曌哥提醒,用“读写分离”来形容这种处理方式不是很合适,用快慢路径来形容更为恰当。的确如此, 因为当key存在于 read中时,也是会去更新 read 的值的。sync.Map加速的主要原理其实就是利用CAS操作比mutex 耗费的时间更低这一点。

最后就是,我们来聊一下 mutexCAS 的问题,一般来说,锁的性能比CAS略差,锁是基于 test and set, CAS是基于 compare and swap 来实现的,两者都是CPU提供的指令,当CPU没有 提供test and set指令时,也可以用compare and swap指令来模拟锁,当然,性能就要差一些了。


更多文章
  • 自己封装一个好用的Dart HTTP库
  • Flutter应用启动后检查更新
  • Grafana Gravatar头像显示bug修复
  • flutter中使用RESTful接口
  • Vim YouCompleteMe使用LSP(以dart为例)
  • flutter webview加载时显示进度
  • SQLAlchemy快速更新或插入对象
  • 修复Linux下curl等无法使用letsencrypt证书
  • 欣赏一下K&R两位大神的代码
  • MySQL的ON DUPLICATE KEY UPDATE语句
  • 使用microk8s快速搭建k8s
  • Python中优雅的处理文件路径
  • Go语言MySQL时区问题
  • 我的技术栈选型
  • 为什么我要用Linux作为桌面?